
Copperbelt University

School of Information and Communication Technology

Computer Science Department

Introduction to Programming in C++

Extracted from Sam’s Teach yourself C++ in 21 Days

The Parts of a C++ Program

C++ programs consist of objects, functions, variables, and other component parts. To get a sense of how a

program fits together you must see a complete working program.

A Simple Program

Even a simple program like the one below has many interesting parts. Let us review this program in more

detail.

1: #include <iostream.h>

2:

3: int main()

4: {

5: cout << "Hello World!\n";

6: return 0;

7: }

On line 1, the file iostream.h is included in the file. The first character is the # symbol, which is a signal to

the preprocessor. Each time you start your compiler, the preprocessor is run. The preprocessor reads through

your source code, looking for lines that begin with the hash symbol (#), and acts on those lines before the

compiler runs. include is a preprocessor instruction that says, "What follows is a filename. Find that file

and copy it to this position". The angle brackets around the filename tell the preprocessor to look in all the

usual places for this file. If your compiler is set up correctly, the angle brackets will cause the preprocessor

to look for the file iostream.h in the directory that holds all the header (H) files for your compiler. The file

iostream.h (Input-Output-Stream) is used by cout, which assists with writing to the screen. The effect of

line 1 is to include the file iostream.h into this program as if you had typed it in yourself. The preprocessor

runs before your compiler each time the compiler is invoked. The preprocessor translates any line that

begins with a hash symbol (#) into a special command, getting your code file ready for the compiler.

Line 3 begins the actual program with a function named main(). Every C++ program has a main() function.

In general, a function is a block of code that performs one or more actions. Usually functions are invoked

or called by other functions, but main() is special. When your program starts, main() is called automatically.

main(), like all functions, must state what kind of value it will return. The return value type for main() in

HELLO.CPP is int, which means that this function will return an integer value. All functions begin with an

opening brace ({) and end with a closing brace (}). The braces for the main() function are on lines 4 and 7.

Everything between the opening and closing braces is considered a part of the function. The object cout in

line 5 is used to print a message to the screen. cout is used in C++ to print strings and values to the screen.

A string is just a set of characters. To use cout, type the word cout, followed by the output redirection

operator (<<). Whatever follows the output redirection operator is written to the screen. If you want a string

of characters written, be sure to enclose them in double quotes ("), as shown on line 5 of our example

program. Note: A text string is a series of, usually printable characters. The final two characters of our

example program, \n, tell cout to put a new line after the words Hello World! The main() function ends on

line 7 with the closing brace.

A Brief Look at cout

Although we shall have a closer look at cout later on, for now we shall see how to use cout to print data to

the screen without fully understanding how this cout works. To print a value to the screen, write the word

cout, followed by the insertion operator (<<), which you create by typing the less-than character (<) twice.

Even though this is two characters, C++ treats it as one. The following program gives the example.

1: // Using cout

2:

3: #include <iostream.h>

4: int main()

5: {

6: cout << "Hello there.\n";

7: cout << "Here is 5: " << 5 << "\n";

8: cout << "The manipulator endl writes a new line to

 the screen." << endl;

9: cout << "Here is a very big number:\t" << 70000 << endl;

10: cout << "Here is the sum of 8 and 5:\t" << 8+5 << endl;

11: cout << "Here's a fraction:\t\t" << (float) 5/8 << endl;

12: cout << "And a very very big number:\t" << (double)

 7000*7000 << endl;

13: cout << "Don't forget to replace Jesse Liberty with

 your name...\n";

14: cout << "Gwembe Shangombo is a C++ programmer!\n";

15: return 0;

16: }

On line 3, the statement #include <iostream.h> causes the iostream.h file to be added to your source code.

This is required if you use cout and its related functions. On line 6 is the simplest use of cout, printing a

string or series of characters. The symbol \n is a special formatting character. It tells cout to print a newline

character to the screen. Three values are passed to cout on line 7, and each value is separated by the insertion

operator. The first value is the string "Here is 5: ". Note the space after the colon. The space is part of the

string. Next, the value 5 is passed to the insertion operator and the newline character (always in double

quotes or single quotes). This causes the line

Here is 5: 5

to be printed to the screen. Because there is no newline character after the first string, the next value is

printed immediately afterwards. This is called concatenating the two values. On line 8, an informative

message is printed, and then the manipulator endl is used. The purpose of endl is to write a new line to the

screen. On line 9, a new formatting character, \t, is introduced. This inserts a tab character and is used on

lines 9-12 to line up the output. Line 9 shows that not only integers, but long integers as well can be printed.

Line 10 demonstrates that cout will do simple addition. The value of 8+5 is passed to cout, but 13 is printed.

On line 11, the value 5/8 is inserted into cout. The term (float) tells cout that you want this value evaluated

as a decimal equivalent, and so a fraction is printed. On line 12 the value 7000 * 7000 is given to cout, and

the term (double) is used to tell cout that you want this to be printed using scientific notation.

Comments

When you are writing a program, it is always clear and self-evident what you are trying to do. However, a

month or so later, when you return to the program, it can be quite confusing and unclear. To fight the onset

of confusion, and to help others understand your code, you'll want to use comments. Comments are simply

text that is ignored by the compiler, but that may inform the reader of what you are doing at any particular

point in your program.

Types of Comments

C++ comments come in two flavors: the double-slash (//) comment, and the slash-star (/*) comment. The

double-slash comment, which will be referred to as a C++-style comment, tells the compiler to ignore

everything that follows this comment, until the end of the line. The slash-star comment mark tells the

compiler to ignore everything that follows until it finds a star-slash (*/) comment mark. These marks will

be referred to as the C-style comments since C++ inherited them from the C language. Every /* must be

matched with a closing */. Many C++ programmers use the C++-style comment most of the time, and

reserve C-style comments for blocking out large blocks of a program. You can include C++-style comments

within a block "commented out" by C-style comments; everything, including the C++-style comments, is

ignored between the C-style comment marks.

Using Comments

As a general rule, the overall program should have comments at the beginning, telling you what the program

does. Each function should also have comments explaining what the function does and what values it

returns. The following example demonstrates the use of comments, showing that they do not affect the

processing of the program or its output.

1: #include <iostream.h>

2:

3: int main()

4: {

5: /* this is a comment

6: and it extends until the closing

7: star-slash comment mark */

8: cout << "Hello World!\n";

9: // this comment ends at the end of the line

10: cout << "That comment ended!\n";

11:

12: // double slash comments can be alone on a line

13: /* as can slash-star comments */

14: return 0;

15: }

Functions

While main() is a function, it is an unusual one. Typical functions are called, or invoked, during the course

of your program execution. A program is executed line by line in the order it appears in your source code,

until a function is reached. Then the program branches off to execute the function. When the function

finishes execution, it returns control to the line of code immediately following the call to the function. A

good analogy for this is sharpening your pencil. If you are drawing a picture, and your pencil breaks, you

might stop drawing, go sharpen the pencil, and then return to what you were doing. When a program needs

a service performed, it can call a function to perform the service and then pick up where it left off when the

function has finished running. The following program demonstrates this idea.

1: #include <iostream.h>

2:

3: // function Demonstration Function

4: // prints out a useful message

5: void DemonstrationFunction()

6: {

7: cout << "In Demonstration Function\n";

8: }

9:

10: // function main - prints out a message, then

11: // calls DemonstrationFunction, then prints out

12: // a second message.

13: int main()

14: {

15: cout << "In main\n" ;

16: DemonstrationFunction();

17: cout << "Back in main\n";

18: return 0;

19: }

The function DemonstrationFunction() is defined on lines 5-7. When it is called, it prints a message to the

screen and then returns. Line 13 is the beginning of the actual program. On line 15, main() prints out a

message saying it is in main(). After printing the message, line 16 calls DemonstrationFunction(). This call

causes the commands in DemonstrationFunction() to execute. In this case, the entire function consists of

the code on line 7, which prints another message. When DemonstrationFunction() completes (line 8), it

returns control to where it was called from. In this case the program returns to line 17, where main() prints

its final line.

Using Functions

Functions either return a value or they return void, meaning they return nothing. A function that adds two

integers might return the sum, and thus would be defined to return an integer value. A function that just

prints a message has nothing to return and would be declared to return void. Functions consist of a header

and a body. The header consists, in turn, of the return type, the function name, and the parameters to that

function. The parameters to a function allow values to be passed into the function. Thus, if the function

were to add two numbers, the numbers would be the parameters to the function. Here's a typical function

header:

int Sum(int a, int b)

A parameter is a declaration of what type of value will be passed into the function. The actual value passed

in by the calling function is called the argument. Many programmers use these two terms, parameters and

arguments, as synonyms. Others are careful about the technical distinction. As scientists, please stick to the

right terms. The body of a function consists of an opening brace, zero or more statements, and a closing

brace. The statements constitute the work of the function. A function may return a value, using a return

statement. This statement will also cause the function to exit. If you don't put a return statement into your

function, it will automatically return void at the end of the function. The value returned must be of the type

declared in the function header. Although functions will be dealt with in more details later, a good

introduction will be given here. The following program demonstrates a function that takes two integer

parameters and returns an integer value.

1: #include <iostream.h>

2: int Add (int x, int y)

3: {

4:

5: cout << "Add(), received " << x << " and " << y << "\n";

6: return (x+y);

7: }

8:

9: int main()

10: {

11: cout << "I'm in main()!\n";

12: int a, b, c;

13: cout << "Enter two numbers: ";

14: cin >> a;

15: cin >> b;

16: cout << "\nCalling Add()\n";

17: c=Add(a,b);

18: cout << "\nBack in main().\n";

19: cout << "c was set to " << c;

20: cout << "\nExiting...\n\n";

21: return 0;

22: }

The function Add() is defined on line 2. It takes two integer parameters and returns an integer value. The

program itself begins on line 9 and on line 11, where it prints a message. The program prompts the user for

two numbers (lines 13 to 15). The user types each number, separated by a space, and then presses the Enter

key. main() passes the two numbers typed in by the user as arguments to the Add() function on line 17.

After this, processing branches to the Add() function, which starts on line 2. The parameters a and b are

printed and then added together. The result is returned on line 6, and the function returns. In lines 14 and

15, the cin object is used to obtain values for the variables a and b, and cout is used to write the values to

the screen.

Variables and Constants

Programs need a way to store the data they use. Variables and constants offer various ways to represent

and manipulate that data.

What Is a Variable?

In C++ a variable is a memory location to store information. A variable is a location in your computer's

memory in which you can store a value and from which you can later retrieve that value. Your computer's

memory can be viewed as a series of locations. Each location is one of many, many such and all are lined

up. Each memory location is numbered sequentially. These numbers are known as memory addresses. A

variable reserves one or more memory locations in which you may store a value. Your variable's name (for

example, myVariable) is a label on one of these memory locations, so that you can find it easily without

knowing its actual memory address.

Setting Memory Aside

When you define a variable in C++, you must tell the compiler what kind of variable it is: an integer, a

character, and so forth. This information tells the compiler how much room to set aside and what kind of

value you want to store in your variable. Each memory location is one byte large. If the type of variable

you create is two bytes in size, it needs two bytes of memory, or two memory locations. The type of the

variable (for example, integer) tells the compiler how much memory (how many memory locations) to set

aside for the variable.

Size of Integers

On any one computer, each variable type takes up a single, unchanging amount of room. That is, an integer

might be two bytes on one machine, and four on another, but on one particular computer, the amount of

storage is always the same for a particular type, day in and day out. A char variable (used to hold

characters) is most often one byte long. A short integer is two bytes on most computers, a long integer

is usually four bytes, and an integer (without the keyword short or long) can be two or four bytes. A

character is a single letter, number, or symbol that takes up one byte of memory. The following program

helps you to determine the size of memory allocated to your variable type.

1: #include <iostream.h>

2:

3: int main()

4: {

5: cout << "The size of an int is:\t\t" << sizeof(int) << " bytes.\n";

6: cout << "The size of a short int is:\t" << sizeof(short) << " bytes.\n";

7: cout << "The size of a long int is:\t" << sizeof(long) << " bytes.\n";

8: cout << "The size of a char is:\t\t" << sizeof(char) << " bytes.\n";

9: cout << "The size of a float is:\t\t" << sizeof(float) << " bytes.\n";

10: cout << "The size of a double is:\t" << sizeof(double) << " bytes.\n";

11:

12: return 0;

13: }

You may discover that the number of bytes presented might be different from computer to computer. The

one new feature in our previous program is the use of the sizeof() function in lines 5 through 10.

sizeof() is provided by your compiler, and it tells you the size of the object you pass in as a parameter.

For example, on line 5 the keyword int is passed into sizeof().

Signed and Unsigned

In addition, all integer types come in two varieties: signed and unsigned. The idea here is that

sometimes you need negative numbers, and sometimes you don't. Integers (short and long) without the

word "unsigned" are assumed to be signed. Signed integers are either negative or positive. Unsigned

integers are always positive. Because you have the same number of bytes for both signed and unsigned

integers, the largest number you can store in an unsigned integer is twice as big as the largest positive

number you can store in a signed integer. An unsigned short integer can handle numbers from 0 to

65,535. Half the numbers represented by a signed short are negative, thus a signed short can only

represent numbers from -32,768 to 32,767.

Fundamental Variable Types

Several other variable types are built into C++. They can be conveniently divided into integer variables (the

type discussed so far), floating-point variables, and character variables. Floating-point variables have values

that can be expressed as fractions, that is, they are real numbers. Character variables hold a single byte and

are used for holding the 256 characters and symbols of the ASCII and extended ASCII character sets. The

ASCII character set is the set of characters standardized for use mostly on microcomputers. ASCII is an

acronym for American Standard Code for Information Interchange. Nearly every computer operating

system supports ASCII, though many support other international character sets as well, such as the

Extended Binary Coded Decimals Interchange Code (EBCDIC) which is mostly used on mainframes. The

types of variables used in C++ programs are described in the table below. This table shows the variable

type, how much room we assume it takes in memory, and what kinds of values that can be stored in these

variables. The values that can be stored are determined by the size of the variable types. This is computer

dependent as shown in our earlier program.

Type Size Values

unsigned short int 2 bytes 0 to 65,535

short int 2 bytes -32,768 to 32,767

unsigned long int 4 bytes 0 to 4,294,967,295

long int 4 bytes
-2,147,483,648 to

2,147,483,647

int (16 bit) 2 bytes -32,768 to 32,767

int (32 bit) 4 bytes
-2,147,483,648 to

2,147,483,647

unsigned int (16 bit) 2 bytes 0 to 65,535

unsigned int (32 bit) 2 bytes 0 to 4,294,967,295

Char 1 byte 256 character values

Float 4 bytes 1.2e-38 to 3.4e38

Double 8 bytes 2.2e-308 to 1.8e308

Defining a Variable

You create or define a variable by stating its type, followed by one or more spaces, followed by the variable

name and a semicolon. The variable name can be virtually any combination of letters, but cannot contain

spaces. Legal variable names include x, J23qrsnf, and myAge. Good variable names tell you what the

variables are for; using good names makes it easier to understand the flow of your program. The following

statement defines an integer variable called myAge: int myAge;

As a general programming practice, avoid such horrific names as J23qrsnf, and restrict single-letter

variable names (such as x or i) to variables that are used only very briefly. Try to use expressive names

such as myAge or howMany. Such names are easier to understand many days later when you are scratching

your head trying to figure out what you meant when you wrote that line of code. Based on the first few lines

of code in the following two programs, try to figure out what they do.

Example 1

main()

{

 unsigned short x;

 unsigned short y;

 ULONG z;

 z = x * y;

}

Example 2

main ()

{

 unsigned short Width;

 unsigned short Length;

 unsigned short Area;

 Area = Width * Length;

}

Clearly, the second program is easier to understand, and the inconvenience of having to type the longer

variable names is more than made up for by how much easier it is to maintain the second program.

Case Sensitivity

C++ is case-sensitive. In other words, uppercase and lowercase letters are considered to be different. A

variable named age is different from Age, which is different from AGE. However, some compilers may

allow you to turn case sensitivity off. But please, don't be tempted to do this because your programs may

not work with other compilers, and other C++ programmers may find your program hard to understand, let

alone to modify. There are various conventions for how to name variables, and although it doesn't much

matter which method you adopt, it is important to be consistent throughout your program. Many

programmers prefer to use all lowercase letters for their variable names. If the name requires two words

(for example, my car), there are two popular conventions: my_car or myCar. The latter form is called

camel-notation, because the capitalization looks something like a camel's hump.

Keywords

Some words are reserved by C++, and you may not use them as variable names. These are called keywords

used by the compiler to control your program. Keywords include if, while, for, and main. Your

compiler manual should provide a complete list, but generally, any reasonable name for a variable is almost

certainly not a keyword.

Creating More Than One Variable at a Time

You can create more than one variable of the same type in one statement by writing the type and then the

variable names, separated by commas. For example:

unsigned int myAge, myWeight; // two unsigned int variables

long area, width, length; // three longs

As you can see, myAge and myWeight are each declared as unsigned integer variables. The second

line declares three individual long variables named area, width, and length. The type (long) is

assigned to all the variables, so you cannot mix types in one definition statement.

Assigning Values to Your Variables

You assign a value to a variable by using the assignment operator (=). Thus, you would assign 5 to Width

by writing

unsigned short Width;

Width = 5;

You can combine these steps and initialize Width when you define it by writing

unsigned short Width = 5;

Initialization looks very much like assignment, and with integer variables, the difference is minor. Later,

when constants are covered, you will see that some values must be initialized because they cannot be

assigned to. The essential difference is that initialization takes place at the moment you create the variable.

Just as you can define more than one variable at a time, you can initialize more than one variable at creation.

For example:

// create two long variables and initialize them

Ulong width = 5, length = 7;

This example initializes the long integer variable width to the value 5 and the long integer variable

length to the value 7. You can even mix definitions and initializations:

int myAge = 39, yourAge, hisAge = 40;

This example creates three variables of int type, and it initializes the first and third. The following program

is a complete program, ready to compile, that computes the area of a rectangle and writes the answer to the

screen.

1: // Demonstration of variables

2: #include <iostream.h>

3:

4: int main()

5: {

6: unsigned short int Width = 5, Length;

7: Length = 10;

8:

9: // create an unsigned short and initialize with result

10: // of multiplying Width by Length

11: unsigned short int Area = Width * Length;

12:

13: cout << "Width:" << Width << "\n";

14: cout << "Length: " << Length << endl;

15: cout << "Area: " << Area << endl;

16: return 0;

17: }

Line 2 includes the required include statement for the iostream's library so that cout will work. Line

4 begins the program. On line 6, Width is defined as an unsigned short integer, and its value is

initialized to 5. Another unsigned short integer, Length, is also defined, but it is not initialized. On

line 7, the value 10 is assigned to Length. On line 11, an unsigned short integer, Area, is defined,

and it is initialized with the value obtained by multiplying Width times Length. On lines 13-15, the

values of the variables are printed to the screen. Note that the special word endl creates a new line.

typedef

It can become tedious, repetitious, and, most important, error-prone to keep writing unsigned short

int. C++ enables you to create an alias for this phrase by using the keyword typedef, which stands for

type definition. In effect, you are creating a synonym, and it is important to distinguish this from creating

a new type (which we shall learn later). typedef is used by writing the keyword typedef, followed by

the existing type and then the new name. For example:

typedef unsigned short int USHORT

creates the new name USHORT that you can use anywhere you might have written unsigned short

int. Our previous program is repeated below but now using the type definition USHORT rather than

unsigned short int.

1: // *****************

2: // Demonstrates typedef keyword

3: #include <iostream.h>

4:

5: typedef unsigned short int USHORT; //typedef defined

6:

7: void main()

8: {

9: USHORT Width = 5;

10: USHORT Length;

11: Length = 10;

12: USHORT Area = Width * Length;

13: cout << "Width:" << Width << "\n";

14: cout << "Length: " << Length << endl;

15: cout << "Area: " << Area <<endl;

16: }

As you can see, on line 5, USHORT is type defined as a synonym for unsigned short int. The

program is very much like the previous one and the output is the same.

When to Use short and When to Use long

One source of confusion for new C++ programmers (Newbies) is when to declare a variable to be type

long and when to declare it to be type short. The rule, when understood, is fairly straightforward: If

there is any chance that the value you'll want to put into your variable will be too big for its type, use a

larger type. As seen earlier, unsigned short integers, assuming that they are two bytes, can hold a

value only up to 65,535. Signed short integers can hold only half of that. Unsigned long integers

can hold an extremely large number (4,294,967,295) that is still quite finite. If you need a larger number,

you'll have to go to float or double, and then you lose some precision. Floats and doubles can hold

extremely large numbers, but only the first 7 or 19 digits are significant on most computers. That means

that the number is rounded off after that many digits.

Wrapping Around an unsigned Integer

The fact that unsigned long integers have a limit to the values they can hold is only rarely a problem,

but what happens if you do run out of room? When an unsigned integer reaches its maximum value, it

wraps around and starts over, much as a car odometer might. The program below shows what happens if

you try to put too large a value into a short integer.

1: #include <iostream.h>

2: int main()

3: {

4: unsigned short int smallNumber;

5: smallNumber = 65535;

6: cout << "small number:" << smallNumber << endl;

7: smallNumber++;

8: cout << "small number:" << smallNumber << endl;

9: smallNumber++;

10: cout << "small number:" << smallNumber << endl;

11: return 0;

12: }

On line 4, smallNumber is declared to be an unsigned short int, which can be two-byte variable,

able to hold a value between 0 and 65,535. On line 5, the maximum value is assigned to smallNumber,

and it is printed on line 6. On line 7, smallNumber is incremented; that is, 1 is added to it. The symbol

for incrementing is ++ (as in the name C++, an incremental increase from C). Thus, the value in

smallNumber would be 65,536. However, unsigned short integers can't hold a number larger than

65,535, so the value is wrapped around to 0, which is printed on line 8. On line 9 smallNumber is

incremented again, and then its new value, 1, is printed.

Wrapping Around a signed Integer

A signed integer is different from an unsigned integer, in that half of the values you can represent are

negative. Instead of picturing a traditional car odometer, you might picture one that rotates up for positive

numbers and down for negative numbers. One kilometre from 0 is either 1 or -1. When you run out of

positive numbers, you run right into the smallest negative numbers and then count back down to 0. The

following program shows what happens when you add 1 to the maximum positive number in an unsigned

short integer. The program gives a demonstration of adding too large a number to a signed integer.

1: #include <iostream.h>

2: int main()

3: {

4: short int smallNumber;

5: smallNumber = 32767;

6: cout << "small number:" << smallNumber << endl;

7: smallNumber++;

8: cout << "small number:" << smallNumber << endl;

9: smallNumber++;

10: cout << "small number:" << smallNumber << endl;

11: return 0;

12: }

On line 4, smallNumber is declared this time to be a signed short integer (if you don't explicitly say

that it is unsigned, it is assumed to be signed). The program proceeds much as the preceding one, but

the output is quite different. To fully understand this output, you must be comfortable with how signed

numbers are represented as bits in a two-byte integer.

The bottom line, however, is that just like an unsigned integer, the signed integer wraps around from

its highest positive value to its lowest negative value.

Characters

Character variables (type char) are typically 1 byte, enough to hold 256 values. A char can be

interpreted as a small number (0-255) or as a member of the ASCII set. ASCII stands for the American

Standard Code for Information Interchange. The ASCII character set is used to encode all the letters,

numerals, and punctuation marks in computers. Computers do not know about letters, punctuation marks,

or sentences. All they understand are numbers. In fact, all they really know about is whether or not a

sufficient amount of electricity is at a particular junction of wires. If so, it is represented internally as a 1;

if not, it is represented as a 0. By grouping ones and zeros, the computer is able to generate patterns that

can be interpreted as numbers, and these in turn can be assigned to letters and punctuation marks. In the

ASCII code, the lowercase letter "a" is assigned the value 97. All the lower- and uppercase letters, all the

numerals, and all the punctuation marks are assigned values between 1 and 128. Another 128 marks and

symbols are reserved for use by the computer maker.

Characters and Numbers

When you put a character, for example, `a’, into a char variable, what is really there is just a number

between 0 and 255. The compiler knows, however, how to translate back and forth between characters

(represented by a single quotation mark and then a letter, numeral, or punctuation mark, followed by a

closing single quotation mark) and one of the ASCII values. The value/letter relationship is arbitrary; there

is no particular reason that the lowercase "a" is assigned the value 97. As long as everyone (your keyboard,

compiler, and screen) agrees, there is no problem. It is important to realize, however, that there is a big

difference between the value 5 and the character `5’. The latter is actually valued at 53, much as the letter

`a’ is valued at 97. The following program prints the character values for the integers 32 through 127.

1: #include <iostream.h>

2: int main()

3: {

4: for (int i = 32; i<128; i++)

5: cout << (char) i;

6: return 0;

7: }

 Output: !"#$%G'()*+,./0123456789:;<>?@ABCDEFGHIJKLMNOP

_QRSTUVWXYZ[\]^'abcdefghijklmnopqrstuvwxyz<|>~s

Special Printing Characters

The C++ compiler recognizes some special characters for formatting. The table below shows the most

common ones used. You put these into your code by typing the backslash (called the escape character),

followed by the character. Thus, to put a tab character into your code, you would enter a single quotation

mark, the slash, the letter t, and then a closing single quotation mark:

char tabCharacter = `\t’;

This example statement declares a char variable (tabCharacter) and initializes it with the character

value \t, which is recognized as a tab. The special printing characters are used when printing either to the

screen or to a file or other output device. An escape character changes the meaning of the character that

follows it. For example, normally the character n means the letter n, but when it is preceded by the escape

character (\) it means new line.

Character What it means

\n new line

\t Tab

\b Backspace

\" double quote

\' single quote

\? question mark

\\ Backslash

Constants

Like variables, constants are data storage locations. Unlike variables, and as the name implies, constants

don't change their values throughout the running of a program. You must initialize a constant when you

create it, and you cannot assign a new value to it later.

Literal Constants

C++ has two types of constants: literal and symbolic. A literal constant is a value typed directly into your

program wherever it is needed. For example: int myAge = 39;

myAge is a variable of type int; 39 is a literal constant. You can't assign a value to 39, and its value can't

be changed.

Symbolic Constants

A symbolic constant is a constant that is represented by a name, just as a variable is represented. Unlike a

variable, however, after a constant is initialized, its value can't be changed. If your program has one integer

variable named students and another named classes, you could compute how many students you

have, given a known number of classes, if you knew there were 15 students per class:

students = classes * 15; //* indicates multiplication.

In this example, 15 is a literal constant. Your code would be easier to read, and easier to maintain, if you

substituted a symbolic constant for this value:

students = classes * studentsPerClass

If you later decided to change the number of students in each class, you could do so where you define the

constant studentsPerClass without having to make a change every place you used that value. There

are two ways to declare a symbolic constant in C++. The old, traditional, and now obsolete way is with a

preprocessor directive, #define. To define a constant the traditional way, you would enter this:

#define studentsPerClass 15

Note that studentsPerClass is of no particular type (int, char, and so on). #define does a simple

text substitution. Every time the preprocessor sees the word studentsPerClass, it substitutes it for 15.

Because the preprocessor runs before the compiler, your compiler never sees your constant; it sees the

number 15. The other way to define constants is with the use of the reserved word const. Although

#define works, there is a new, much better way to define constants in C++:

const unsigned short int studentsPerClass = 15;

This example also declares a symbolic constant named studentsPerClass, but this time

studentsPerClass is typed as an unsigned short int. This method has several advantages in

making your code easier to maintain and in preventing bugs. The biggest difference is that this constant has

a type, and the compiler can enforce that it is used according to its type. Constants cannot be changed while

the program is running. If you need to change studentsPerClass, for example, you need to change

the code and recompile the program.

